111 research outputs found

    Uncertainty-driven adaptive estimation with applications in electrical power systems

    Get PDF
    From electrical power systems to meteorology, large-scale state-space monitoring and forecasting methods are fundamental and critical. Such problem domains pose challenges from both computational and signal processing perspectives, as they typically comprise a large number of elements, and processes that are highly dynamic and complex (e.g., severe nonlinearity, discontinuities, and uncertainties). This makes it especially challenging to achieve real-time operations and control. For decades, researchers have developed methods and technology to improve the accuracy and efficiency of such large-scale state-space estimation. Some have devoted their efforts to hardware advances---developing advanced devices with higher data precision and update frequency. I have focused on methods for enhancing and optimizing the state estimation performance. As uncertainties are inevitable in any state estimation process, uncertainty analysis can provide valuable and informative guidance for on-line, predictive, or retroactive analysis. My research focuses primarily on three areas: 1. Grid Sensor Placement. I present a method that combines off-line steady-state uncertainty and topology analysis for optimal sensor placement throughout the grid network. 2. Filter Computation Adaptation. I present a method that utilizes on-line state uncertainty analysis to choose the best measurement subsets from the available (large-scale) measurement data. This allows systems to adapt to dynamically available computational resources. 3. Adaptive and Robust Estimation. I present a method with a novel on-line measurement uncertainty analysis that can distinguish between suboptimal/incorrect system modeling and/or erroneous measurements, weighting the system model and measurements appropriately in real-time as part of the normal estimation process. We seek to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While these methods are developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.Doctor of Philosoph

    Functional complementation between FADD and RIP1 in embryos and lymphocytes.

    Get PDF
    FADD is a common adaptor shared by several death receptors for signalling apoptosis through recruitment and activation of caspase 8 (refs 1-3). Death receptors are essential for immune homeostasis, but dispensable during embryogenesis. Surprisingly, Fadd(-/-) mice die in utero and conditional deletion of FADD leads to impaired lymphocyte proliferation. How FADD regulates embryogenesis and lymphocyte responses has been a long-standing enigma. FADD could directly bind to RIP1 (also known as RIPK1), a serine/threonine kinase that mediates both necrosis and NF-κB activation. Here we show that Fadd(-/-) embryos contain raised levels of RIP1 and exhibit massive necrosis. To investigate a potential in vivo functional interaction between RIP1 and FADD, null alleles of RIP1 were crossed into Fadd(-/-) mice. Notably, RIP1 deficiency allowed normal embryogenesis of Fadd(-/-) mice. Conversely, the developmental defect of Rip1(-/-) lymphocytes was partially corrected by FADD deletion. Furthermore, RIP1 deficiency fully restored normal proliferation in Fadd(-/-) T cells but not in Fadd(-/-) B cells. Fadd(-/-)Rip1(-/-) double-knockout T cells are resistant to death induced by Fas or TNF-α and show reduced NF-κB activity. Therefore, our data demonstrate an unexpected cell-type-specific interplay between FADD and RIP1, which is critical for the regulation of apoptosis and necrosis during embryogenesis and lymphocyte function

    Preliminary study on mesenchymal stem cells in repairing nerve injury in pelvic floor denervation

    Get PDF
    Introduction: Nerve injury is considered one of the causes of pelvic floor dysfunction. Mesenchymal stem cells (MSCs) transplantation provides new possibilities for refractory degenerative diseases. This study aimed to explore the possibility and strategy of mesenchymal stem cells in treating pelvic floor dysfunction nerve injury.Methods: MSCs were isolated from human adipose tissue and cultured. A MSCs suspension (40 µL at 5 × 107/mL) was loaded on a gelatin scaffold. A rat model of anterior vaginal wall nerve injury was established by bilateral pudendal nerve denervation. The nerve tissue repair effect of mesenchymal stem cells transplanted into the anterior vaginal wall of a rat model was explored and compared in the following three groups: blank gelatin scaffold group (GS group), mesenchymal stem cell injection group (MSC group), and mesenchymal stem cells loaded on the gelatin scaffold group (MSC-GS group). Nerve fiber counting under a microscope and mRNA expression of neural markers were tested. Moreover, mesenchymal stem cells were induced into neural stem cells in vitro, and their therapeutic effect was explored.Results: Rat models of anterior vaginal wall nerve injury induced by bilateral pudendal nerve denervation showed a decreased number of nerve fibers in the anterior vaginal wall. qRT-PCR revealed that the content of neurons and nerve fibers in the rat model began to decrease 1 week after the operation and this could continue for 3 months. In vivo experiments showed that MSC transplantation improved the nerve content, and MSCs loaded on the gelatin scaffold had an even better effect. mRNA expression analysis demonstrated that MSCs loaded on gelatin scaffolds induced a higher and earlier gene expression of neuron-related markers. Induced neural stem cell transplantation was superior in improving the nerve content and upregulating the mRNA expression of neuron-related markers in the early stage.Conclusion: MSCs transplantation showed a promising repair capacity for nerve damage in the pelvic floor. The supporting role of gelatin scaffolds might promote and strengthen the nerve repair ability at an early stage. Preinduction schemes could provide an improved regenerative medicine strategy for innervation recovery and functional restoration in pelvic floor disorders in the future

    Cytokine-Based Generation of CD49a+Eomes−/+ Natural Killer Cell Subsets

    Get PDF
    Recent studies have identified CD49a+Eomes− and CD49a+Eomes+ subsets of tissue-resident NK (trNK) cells in different organs of the mouse. However, the characteristics of CD49a+Eomes−/+ NK cell development and the regulation of Eomes expression in NK cells remain unclear. Here, we established an in vitro cytokine-based feeder-free system in which bone marrow progenitor cells differentiate into CD49a+ NK cells. IL-15 was identified as being the key cytokine in this system that supported the development and maintenance of CD49a+ NK cells. The CD49a+ NK cells generated were Eomes−CD49b− and shared the same phenotype as hepatic trNK cells. IL-4 induced the expression of Eomes in generated NK cells and converted them into CD49a+Eomes+ cells, which were phenotypically and functionally similar to uterine trNK cells. Moreover, the IL-4/STAT6 axis was identified as being important in the generation of CD49a+Eomes+ induced NK cells. Collectively, these studies describe an approach to generate CD49a+Eomes−/+ subsets of NK cells and demonstrate important roles for IL-15 and IL-4 in the differentiation of these cells. These findings have potential for developmental research underlying the generation of different subsets of NK cells and the application of adoptive NK cell transfer therapies

    Multicentre, prospective, randomised controlled trial to evaluate hexaminolevulinate photodynamic therapy (Cevira) as a novel treatment in patients with high-grade squamous intraepithelial lesion: APRICITY phase 3 study protocol

    Get PDF
    INTRODUCTION: High-risk human papilloma virus (HPV)-associated cervical cancer is the fourth most common cancer in women worldwide. Current treatments of high-grade squamous intraepithelial lesion (HSIL) of the cervix are based on invasive surgical interventions, compromising cervical competence and functionality. APRICITY is a multicentre, prospective, double-blind, randomised controlled phase 3 study further evaluating the efficacy and safety of Cevira, an integrated drug-delivery and light-delivery device for hexaminolevulinate photodynamic therapy, which shows promise as a novel, non-invasive outpatient therapy for women with HSIL. METHODS AND ANALYSIS: Patients with biopsy-confirmed HSIL histology are invited to participate in the study planned to be conducted at 47 sites in China and 25 sites in Ukraine, Russia and the European Union. The aim is to include at least 384 patients, which will be randomised to either Cevira or placebo group (2:1). All patients will be assessed 3 months after first treatment and a second treatment will be administered in patients who are HPV positive or have at least low-grade squamous intraepithelial lesion. Primary endpoint is the proportion of the responders 6 months after first treatment. Secondary efficacy and safety endpoints will be assessed at 6 months, and data for secondary performance endpoints of the Cevira device will be collected at 3 months and 6 months, in case second treatment was administered. All patients in the Cevira group will be enrolled in an open, long-term extension study for 6 months to collect additional efficacy and safety data (study extension endpoints). ETHICS AND DISSEMINATION: The study was approved by the ethics committee of the Peking Union Medical College Hospital and Hannover Medical University, Germany. Findings will be disseminated through peer review publications and conference presentations. TRIAL REGISTRATION NUMBER: NCT04484415; clinicaltrials.gov

    Interpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines

    Full text link
    The dearth of prescribing guidelines for physicians is one key driver of the current opioid epidemic in the United States. In this work, we analyze medical and pharmaceutical claims data to draw insights on characteristics of patients who are more prone to adverse outcomes after an initial synthetic opioid prescription. Toward this end, we propose a generative model that allows discovery from observational data of subgroups that demonstrate an enhanced or diminished causal effect due to treatment. Our approach models these sub-populations as a mixture distribution, using sparsity to enhance interpretability, while jointly learning nonlinear predictors of the potential outcomes to better adjust for confounding. The approach leads to human-interpretable insights on discovered subgroups, improving the practical utility for decision suppor

    17β-Estradiol Enhances Breast Cancer Cell Motility and Invasion via Extra-Nuclear Activation of Actin-Binding Protein Ezrin

    Get PDF
    Estrogen promotes breast cancer metastasis. However, the detailed mechanism remains largely unknown. The actin binding protein ezrin is a key component in tumor metastasis and its over-expression is positively correlated to the poor outcome of breast cancer. In this study, we investigate the effects of 17β-estradiol (E2) on the activation of ezrin and its role in estrogen-dependent breast cancer cell movement. In T47-D breast cancer cells, E2 rapidly enhances ezrin phosphorylation at Thr567 in a time- and concentration-dependent manner. The signalling cascade implicated in this action involves estrogen receptor (ER) interaction with the non-receptor tyrosine kinase c-Src, which activates the phosphatidylinositol-3 kinase/Akt pathway and the small GTPase RhoA/Rho-associated kinase (ROCK-2) complex. E2 enhances the horizontal cell migration and invasion of T47-D breast cancer cells in three-dimensional matrices, which is reversed by transfection of cells with specific ezrin siRNAs. In conclusion, E2 promotes breast cancer cell movement and invasion by the activation of ezrin. These results provide novel insights into the effects of estrogen on breast cancer progression and highlight potential targets to treat endocrine-sensitive breast cancers
    • …
    corecore